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AERODYNAMIC AND ROCKET BRAKING O F  BLUNT NONLIFTING 

VEH1CL;ES ENTERING THE EARTH'S ATMOSPHFCRE 

AT VERY HIGH SPEEDS 

By Kenneth K.  Yoshikawa and Bradford H. Wick 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

A study has been made of t he  r e l a t i v e  m e r i t s  of aerodynamic braking, and 
combined rocket and aerodynamic braking of blunt  nonl i f t ing  vehicles enter ing 
the  ea r th ' s  atmosphere a t  speeds varying fzom 25,OOO t o  60,000 f e e t  per second. 
The study covered a wide range of hea ts  of ab la t ion  of t he  heat shield,  spe- 
c i f i c  impulses of the  rocket,  entry angles,  nose r a d i i ,  and vehicle weight-to- 
area r a t i o s .  The assumed values of heat of ab la t ion  ranged f romthe  heat 
required t o  vaporize Teflon t o  a value t h a t  i s  higher by a fac tor  of 10. The 
values of spec i f ic  impulse were appropriate f o r  chemical, nuclear, and e l e c t r i -  
c a l  propulsion devices. Radiation w a s  the  dominant mode of heat t r ans fe r  for  
speeds i n  excess of about 40,000 f e e t  per second. I n  t r ea t ing  t h i s  mode of 
heating, it w a s  necessary t o  account f o r  the  self-absorption of shock-layer 
rad ia t ion  and the  shock-layer cooling that r e s u l t s  from the  rad ia t ion  t h a t  i s  
not absorbed. 

For a Teflon heat shield and a chemical rocket,  nei ther  aerodynamic brak- 
ing alone nor an optimum combination of rocket and aerodynamic braking provides 
an acceptable recovery of a blunt nonl i f t ing  vehicle returning t o  the  e a r t h ' s  
atmosphere a t  speeds i n  excess of 40,000 f e e t  per second. Recovery of a t  l e a s t  
50 percent of the  i n i t i a l  weight f o r  t he  higher speeds w i l l  require e i the r  an 
ablat ive heat shield with a heat of ablat ion t h a t  i s  a fac tor  of 5 higher than 
the heat required t o  vaporize Teflon or a rocket with a performance t h a t  i s  
2.5 times higher than t h a t  expected f o r  a nuclear device. When the  heat of 
ablat ion i s  higher by a fac tor  of 10, aerodynamic braking for  a number of the  
en t ry  and vehicle conditions matches the  recovery performance offered by the  
combined braking of aerodynamic drag and an e l e c t r i c a l  propulsion device. In  
view of the  r e s u l t s  of a recent study (NASA TR R-185) which indicate  t h a t  a 
conical body i s  more e f f i c i e n t  than a blunt body f o r  en t ry  a t  the  very high 
speeds, aerodynamic braking must be favored over combined braking f o r  en t ry  
speeds up t o  60,000 f e e t  per second. 

IN'I'RODUCTION 

Some space vehicles w i l l  be required t o  explore the  planets  i n  t he  solar  
system and then re turn  t o  ea r th .  Many of t he  problems associated with the  
entry of these vehicles i n to  t h e  ea r th ' s  atmosphere have been examined and 



discussed i n  some d e t a i l  by Allen (ref.  1). 
predicted t o  be considerably i n  excess of e a r t h  escape speed. 
speed increases,  rad ia t ion  becomes the  increasingly important mode of heat 
t r ans fe r  and far exceeds convection. Recent s tudies  have indicated t h a t  t he  
dependence of rad ia t ive  heat t r ans fe r  on speed ranges from the  eighth t o  the  
s ixteenth power of speed, compared t o  approximately the t h i r d  power for  convec- 
t i v e  heat t r a n s f e r .  Thus the  f r ac t ion  of t he  t o t a l  energy per  vehicle u n i t  
mass t h a t  i s  converted t o  heat increases d ra s t i ca l ly  with increasing speed. 
With t h e  t o t a l  energy per un i t  mass increasing as the  square of t h e  speed, t he  
proportion of t he  vehicle mass required f o r  heat protect ion leaves a vanish- 
ingly small proportion as payload. 
objects enter  t he  atmosphere a t  these high speeds. 

Entry speeds of these vehicles a re  
A s  t he  en t ry  

It i s  of i n t e r e s t  t o  note t h a t  many na tura l  
(See r e f s .  1 -4 . )  

With t h i s  fu ture  t o  be faced by the  designer of vehicles fo r  high-speed 
entry of t he  ea r th ' s  atmosphere, it i s  c l ea r  t h a t  some changes i n  the  design of 
entry systems must be considered. 
i s  t o  employ rocket braking t o  slow the  vehicle down before atmosphere en t ry  
ra ther  than use aerodynamic braking alone. 
braking and combined rocket and aerodynamic braking are compared on the  basis 
of t he  r a t i o  of f i n a l  t o  i n i t i a l  weight. 
fac tors ,  en t ry  speed, en t ry  angle, vehicle propert ies  (both aerodynamic and 
physical) ,  heat-shield effectiveness,  and rocket performance. Accordingly, 
most of these f ac to r s  w e r e  var iables  i n  the  study. The vehicles considered 
were blunt nonl i f t ing  bodies. 

One possible change t h a t  i s  examined herein 

The r e l a t i v e  merits of aerodynamic 

The r e l a t i v e  m e r i t s  depend upon many 

NOTATION 

A 

CD 

g 

h 

1 

L 

Rb 

Rn 

T 

t 

V 

W 

2 

2 cross-sect ional  area of body, fib 

drag coef f ic ien t ,  2 drag 
pV2A 

grav i ta t iona l  accelerat ion 

a l t i t u d e  

specif ic  impulse 

body volume 
A 

i n i t i a l  e f f ec t ive  length of body, 

radius  of body cross sect ion 

nose radius  of body 

t h rus t  

time 

speed 

b ody weight 



w spec i f ic  weight 

y f l igh t -pa th  angle. relative t o  loca l  horizontal  

p atmospheric density 

A heat - transf er coef f ic ien t  

5 heat of ablat ion 

Subscripts 

c convective 

E entry 

F f i n a l  (zero a l t i t u d e )  

I i n i t i a l  

0 sea l eve l  

n 

r rad ia t ive  

none qui 1 ib  r i u m  

ANALYSIS 
Relations f o r  Aerodynamic Braking 

Equations of motion and mass loss. - Analyses of the  motion, heating, and 
ablat ion of bodies i n  f l i g h t  through the  atmosphere have been presented i n  a 
number of reports  (e.g. ,  refs. 1-7) .  The equations of motion and mass l o s s  f o r  
a body i n  a r e l a t ive ly  steep, s t ra ight - l ine  t r a j ec to ry  can be expressed as 

where 

A 

5 heating rate/ablat ion r a t e  

heating r a t e  per un i t  area/(1/2)pV3 

With the  introduction of the  expression f o r  a s t r a igh t - l i ne  t r a j ec to ry  

d t = -  dh 
V s i n  y E 
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equations ( la)  and ( l b )  become 

The foregoing two simultaneous, nonlinear, f i r s t -o rde r  d i f f e r e n t i a l  
equations are solved numerically by use of an e lec t ronic  d i g i t a l  computer t o  
obtain the  r a t i o  of f i n a l  t o  i n i t i a l  weight WF/WE. 
solutions,  it w a s  found desirable  t o  use the  following equations which w e r e  
obtained from equations (3a) and (3b) by introducing the  en t ry  parameter 
(WE/Cfln)sin ?'E: 

I n  obtaining the  numerical 

The des i r ab i l i t y  of introducing the  parameter (WE/CNn)sin ?'E 
range of values of Rn, one set of values of t he  parameter w i l l  suf f ice  t o  
cover r e a l i s t i c  ranges of vehicle dens i t ies ,  lengths ,  and entry angles.  

i s  t h a t ,  fo r  a 

Evaluation of CD and A.- In  evaluating the  coef f ic ien ts  CD and h i n  t h e  
~- 

foregoing equations Tt i s  necessary t o  specify the  geometry of t he  body nose. 
The nose shape ( f i g .  1) assumed i n  t h i s  analysis  i s  a spherical  segment fo r  
which Rn/f$, = 2.  
t he  body ab la tes .  The drag coeff ic ient  of a nonl i f t ing  body of the  assumed 
nose shape, as given by Newtonian theory, i s  CD = 1.75. 

It i s  fur ther  assumed t h a t  t he  nose shape does not change as 

The heat- t ransfer  coeff ic ient  i s  conrposed of t he  following contributions 
which are evaluated as described below: 

A = A r  + hn + Ac ( 5 )  

(1) AT,  equilibrium gas-cap radiat ion:  The r e s u l t s  of 
references 8 and 9 a re  used t o  calculate  t he  equilibrium radia t ive  
heat- t ransfer  coef f ic ien t .  It i s  assumed t h a t  A r  w a s  constant over 
the  nose (%.e . ,  t he  stagnation-point value w a s  assumed f o r  a l l  po in t s ) .  
This assumption probably provides a s izable  degree of conservatism i n  
the  calculations;  the  values of A r  a re  overestimated by perhaps as 
much as a fac tor  of 2 on the  bas i s  of the  rad ia t ive  heat-transfer dis-  
t r ibu t ions  presented i n  reference 10. 

It i s  t o  be noted, however, t h a t  the  r e s u l t s  presented i n  reference 10 a re  not 
d i r ec t ly  applicable t o  a l l  entry and vehicle conditions considered i n  t h e  
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present analysis .  
which self-absorption of shock-layer rad ia t ion  and shock-layer cooling by 
radiat ion a re  not s ign i f icant .  

The r e s u l t s  of reference 10 apply only t o  conditions for 

(2)  An, nonequilibrium gas-cap radiat ion:  The out-of-equilibrium 
e f fec t s  a re  obtained by extrapolation of exis t ing  experimental data  
(e.g. ,  refs. 11 and 12) .  

(3) hc ,  convection of heat across the  boundary layer :  The bound- 
a ry  layer  i s  assumed t o  be laminar. 
t r ans fe r  coeff ic ient  i s  used f o r  t he  complete nose. A reduction i n  
convective heating resu l t ing  from ablat iqn i s  not taken i n t o  account 
since convective heating i t s e l f  i s  a small proportion of t he  t o t a l  heat 
t ransfer  t o  the  body for entry speeds i n  excess of escape speed. For 
t he  same reason, account i s  not taken of t he  e f f ec t  on the  convective 
heating of t h e  cooling of t h e  shock layer  by rad ia t ion .  I n  view of 
these circumstances, the convective heating coeff ic ient  averaged over 
t he  nose i s  approxima&ed by the  following simple r e l a t ion  ( r e f .  6 ) :  

An averaged convective heat- 

. With the  individual coqonents  evaluated as indicated above, the  value of 
A sometimes exceeds unity,  a c lear ly  untenable r e s u l t  since the  heat t r ans fe r  
t o  the  body w i l l  then exceed the  flux of energy i n t o  the  shock layer .  
t o  avoid t h i s  occurrence, adjusted values of 
following e quat ion : 

I n  order 
A are obtained by use of t he  

- A '  )2 + ( ~ - e  -2h' A = A 'e  (7) 

where A' i s  the  unadjusted value. 

Values of A were calculated as described above; t he  r e s u l t s  a re  
presented i n  f igure 2.  

Relations for Rocket Braking 

The equation f o r  r e c t i l i n e a r  motion of a rocket i n  gravity-free space i s  

The rocket t h rus t  i s  given by 

dW 
d t  

1 - z - T  

5 



When the  above equations a re  combined, 

For constant spec i f ic  impulse (Ig, = constant)  it follows t h a t  

where VI i s  the  i n i t i a l  speed of the  vehicle,  and VE i s  the  speed at  the  
time the  propel lant  burns out,  and a r e  the  weights corresponding 
t o  VI and VE. 

WI and WE 

Combined Aerodynamic and Rocket Braking 

The two types of braking are  combined i n  the  following manner. Rocket 
braking i s  used i n i t i a l l y  t o  decelerate the  vehicle from the i n i t i a l  speed 
t o  
It i s  desired t o  maximize the  r a t i o  of recoverable weight t o  en t ry  weight 
WF/WE' f o r  a given s e t  of en t ry  conditions. 
determined with the  use of the following expression: 

VI 
VE, a t  which rocket burnout occurs and the  vehicle en ters  the atmosphere. 

Maximum values of the r a t i o  a re  

The f i r s t  r a t i o  on 
rocket braking and 
given s e t  of en t ry  
assumed values of 

the  r igh t  side of t he  equation i s  the  weight r a t i o  f o r  
the  second i s  the  r a t i o  f o r  aerodynamic braking. For a 
conditions, values of WF/WI a r e  calculated fo r  various 
VR, and are  p lo t ted  as a function of VE t o  determine the  

maximum value of wF7wI. 
speeds i s  g rea t ly  reduced by the f a c t  t h a t  the  optimum value of 
pendent of t he  i n i t i a l  speed VI. 
t i o n  (12) with respect t o  
equation (11). One obtains 

The nuniber of calculat ions f o r  a range of entry 
VE i s  inde- 

This can be shown by d i f f e ren t i a t ing  equa- 
VE, s e t t i ng  the  der ivat ive equal t o  zero, and using 

or  

The conditions f o r  optimum recoverable mass r a t i o  imposed by t h i s  equation a re  
c l ea r ly  independent of VI. 

6 



APPLICATION O F  A.N.ALYSIS 

Numerical calculat ions w e r e  made for  i n i t i a l  speeds ranging from 25,000 t o  
60,000 feet per second for  t he  following combinations of parameters: 

Nose radius,  Rn:  1.5, 3.0, 7.0, and 15 f e e t  

'Heat of ablat ion,  5: 2xL07, loxL07, and 20xL07 ft2/sec2 

Entry parameter, (WE/C$Rn)sin YE: 

Specific impulse, I: 

3.2, 9.2, 18.4, and 36.8 l b / f t 3  

400, 800, and 4,000 sec 

It w a s  assumed f o r  these calculat ions t h a t  t he  e f fec t ive  ab la t ion  of each 
body began a t  260,000 f e e t  and ended a t  zero a l t i t u d e .  

RESULTS AND DISCUSSION 

The r e s u l t s ,  i n  t he  form of the  r a t i o  of recoverable weight t o  i n i t i a l  
weight as a function of i n i t i a l  speed, f o r  aerodynamic braking alone and fo r  
optimum combinations of rocket and aerodynamic braking are presented i n  f ig-  
ures 3, 4 ,  and 5 .  The r e s u l t s  f o r  aerodynamic braking alone a re  ident i f ied  by 
I = 0; the  i n i t i a l  speed i s  the  atmosphere entry speed. The optimum rocket 
cutoff speed ( the  atmosphere entry speed f o r  combined braking) fo r  each combi- 
nation of rocket and aerodynamic braking i s  iden t i f i ed  by the  point at  which 
the  curve for  t h a t  combination merges with the  curve for I = 0. For i n i t i a l  
speeds greater  than the  optimum rocket cutoff speed, rocket braking should be 
used t o  slow t h e  body p r io r  t o  entering the  atmosphere. 
speeds it i s  more e f f i c i e n t  t o  use aerodynamic braking alone. 

For lower i n i t i a l  

To serve as a reference i n  the  subsequent consideration of t he  resul ts ;  
it i s  desirable t o  r e l a t e  the  assumed heats  of ablat ion and rocket spec i f ic  
impulses t o  pa r t i cu la r  ab la t ive  materials and types of rockets,  respect ively.  
The l o w  heat of ablat ion (2X107 ft2/sec2) i s  approximately equal t o  the  heat 
required t o  vaporize Teflon; whereas, the  high value (20X107 f t2/sec2)  i s  about 
25 percent higher than the  heat of vaporization of quartz a t  3,000' K, and 
within the  low end of t he  range of values quoted fo r  t he  heat of sublimation of 
graphite (which range from about 12 t o  50x10~ ft2/sec2, depending upon the  
molecular weight of t he  carbon vapors).  
(400 sec) i s  representative of high-performance chemically fueled rockets,  t he  
intermediate (800 sec) of nuclear rockets,  and the  high (4,000 sec) of e l e c t r i -  
c a l  propulsion devices. 

The low rocket specif ic  impulse 

A s  shown i n  f igure 3, aerodynamic braking i s  c l ea r ly  in fe r io r  t o  combined 
braking when a Teflon heat shield i s  used. The combination of aerodynamic 
braking and rocket braking with a chemically fueled rocket provides higher 
weight r a t i o s  a t  speeds i n  excess of 34,000 t o  45,000 f e e t  per second, 

conversion t o  Btu/lb i s  as follows: ( c ,  Btu/lb) = 4 ~ 1 0 ~ ~  ( c ,  f t2/sec2)  

7 



depending upon t h e  vehicle and en t ry  conditions. 
however, are not very impressive; fo r  example, f o r  a speed of 60,000 feet per 
second, t he  recoverable weight i s  about 20 percent of t h e  i n i t i a l  weight, or 
less, f o r  an optimum conibination of rocket and aerodynamic braking. 
seen t h a t  one must look forward t o  the  development of e l e c t r i c a l  propulsion 
devices (I = 4,000 sec) before a more acceptable recovery performance i s  
a t ta ined .  For a nuclear device (I = 800 sec) , t he  recoverable weight fo r  an 
entry speed of 60,000 feet per second ranges from 18 t o  35 percent of t he  in i -  
t i a l  weight, whereas an e l e c t r i c a l  device of fe rs  recoverable weights of 50 t o  
75 percent of i n i t i a l  weight. I n  t he  la t ter  case, t h e  rocket cutoff speeds are 
generally close t o  satel l i te  speed, which suggests t h e  in te res t ing  poss ib i l i t y  
of leaving t h e  propulsion device i n  o rb i t  f o r  subsequent reuse.  

The resu l t ing  r a t i o s ,  

It can be 

The r e s u l t s  f o r  t he  intermediate value of heat of ablat ion ( f i g .  4) show 
that combined braking i s  generally superior t o  aerodynamic braking alone, only 
when the  highest  performance rocket (I = 4,000 sec)  i s  used. An interpolat ion 
of the  r e s u l t s  ind ica tes  that ,  f o r  equal recovery performance, the  rocket spe- 
c i f i c  impulse would have t o  be about 2,000 seconds. This value i s  about 2.5 
times that expected f o r  nuclear devices. I n  cont ras t ,  t h e  intermediate value 
of heat of ab la t ion  (10X107 ft2/sec2) i s  only 60 percent of t he  heat of vapor- 
iza t ion  of an ex is t ing  ablat ive material ,  quartz.  

For t he  case of t he  high heat of ab la t ion  ( f i g .  5 ) ,  t he  recovery perform- 
ance provided by aerodynamic braking alone is ,  f o r  some conditions, the  equal 
of t h a t  provided by combined braking with high rocket spec i f ic  impulse. The 
high heat of ab la t ion  appears t o  be within the  capabi l i ty  of current technology 
f o r  ablat ive heat shields ,  being only 25 percent higher than the  heat of vapor- 
i za t ion  of quartz and i n  t h e  lower end of t he  range of values quoted fo r  t h e  
heat of sublimation of graphi te .  The high rocket spec i f ic  impulse, on the  
other hand, i s  w e l l  beyond current rocket technology. 

The r e l a t i v e  merits of aerodynamic braking, and combined aerodynamic and 

Specific impulse, 
se c 

rocket braking fo r  an i n i t i a l  speed of 60,000 f e e t  per second are 
the  following t ab le :  

Cutoff speed, Weight r a t i o ,  
f t / s ec  1 wF/wI 

--- 
34,000 - 45,000 
30,000 - 40,000 

4000 25,000 - 31,000 

- 

o - 0.08 

0.49 - 0.75 

0.06 - 0.18 
0.18 - 0.35 

s k r i z e d  i n  

0 
4000 

8 

--- 0.24 - 0.69 
30,000 - 39,000 0.71 - 0.80 

0 
4000 

--- 0.52 - 0.83 
33,000 - 60,000 0.75 - 0.83 



I n  addi t ion t o  these e f f ec t s ,  on recoverable weight r a t i o ,  of heat of 
ab la t ion  and rocket spec i f ic  impulse, the re  are a l s o  some in t e re s t ing  e f f e c t s  
of nose radius .  Rather than  use constant values of t h e  entry parameter as a 
b a s i s  of comparison (as i n  f i g s .  3, 4, and 5 ) ,  it w i l l  be more meaningful t o  
use constant recoverable weight. Comparison of t h e  e f f e c t  of nose radius  a t  
a constant value of t h e  en t ry  parameter i s  misleading i n  t h a t  vehicles  of d i f -  
f e r ing  t o t a l  weight are compared (assuming t h a t  en t ry  angle remains constant) .  

Figure 6 i l lustrates,  f o r  aerodynamic braking only, t h e  e f f e c t  of nose 
radius  on t h e  r a t i o  of recoverable t o  i n i t i a l  weight f o r  constant recoverable 
weight and en t ry  angle ( i . e . ,  W, s i n  YE The e f f e c t  of increas- 
i n g  nose radius  i s  noted t o  be unfavorable. This result i s  general ly  t y p i c a l  
f o r  other conibinations of VE, I;, and w s i n  YE. 

i s  constant) .  

Also shown i n  f igure 6 a re  two upper boundaries t o  t h e  values of weight 
r a t i o .  
a r b i t r a r y  l i m i t  of 1,000 feet  per second w a s  assumed. The other boundary i s  
based on a l imi t a t ion  on body length irrrposed by a requirement f o r  s t a t i c  aero- 
dynamic s t a b i l i t y .  This requirement i s  m e t  by having t h e  center of grav i ty  
ahead of t h e  center of curvature of t h e  nose (assuming t h a t  only the  pressures 
on t h e  nose a re  s i g n i f i c a n t ) .  
assumed i n  t h i s  study, by using values of l e s s  than 4; i n  order t o  be 
conservative, a value of 3 w a s  used i n  defining t h e  boundary. 
t h a t  these two boundaries together  define the  optimum nose radius  for  a given 
recoverable weight. 
a ry . )  
increasing recoverable weight where t h e  s t a t i c -  s t a b i l i t y  requirement (L/Rb = 3 
boundary) i s  l imit ing;  whereas, nei ther  quantity va r i e s  appreciably where the  
impact-velocity boundary serves as a l i m i t .  

One boundary i s  based on a l imi t a t ion  of impact speed f o r  which an 

This condition i s  met, f o r  t h e  nose shape 
L/Rb 

It w i l l  be noted 

(Note a l s o  t h a t  L/Rb < 3 on the  impact ve loc i ty  bound- 
Both t h e  optimum nose radius  and the  l i m i t  weight r a t i o  increase with 

L i m i t  values of recoverable weight r a t i o  f o r  combined aerodynamic and 
rocket braking a r e  compared i n  f igure  7 with the  corresponding values fo r  aero- 

-dynamic braking alone. The values fo r  combined braking a re  the  maxi" a t ta in-  
able  with each pa r t i cu la r  combination of heat of ab la t ion  and rocket spec i f ic  
impulse. 
are not shown near I = 0; the  reasons f o r  these omissions a re  t h a t  t he  con- 
tou r s  do not vary monotonically near I = 0, and t h e i r  a c t u a l  var ia t ions  a re  
not t o o  s i g n i f i c a n t . )  
of nose radius  on l i m i t  mass r a t i o  generally diminishes with e i t h e r  increasing 
heat  of ab la t ion  or spec i f ic  impulse. Note a l s o  t h a t  t he re  i s  a corresponding 
reduction i n  t h e  va r i a t ion  of weight r a t i o  with the  recoverable weight. Con- 
sequently, t h e  e f f e c t  of nose radius  (or recoverable weight) on the  r e l a t i v e  
meri ts  of aerodynamic braking, and combined aerodynamic and rocket braking i s  
lessened as both t h e  heat  of ab la t ion  and spec i f ic  impulse a re  increased t o  t h e  
highest  values considered i n  t h e  study. Considering t h e  r e l a t i v e  m e r i t s  of 
t h e  two types of braking, r a the r  than  the  e f f e c t s  of nose rad ius  thereon, t he  
l i m i t  weight r a t i o s  provide qua l i t a t ive ly  the  same conclusions as those gained 
f r o m t h e  weight r a t i o s  presented i n  f igures  3, 4 ,  and 5 .  

(For some conditions,  t he  dotted contours of constant WF s i n  YE 

These r e s u l t s  show, as one would expect, t h a t  t h e  e f f e c t  
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CONCLUDING RENARKS 

m 

From the  r e s u l t s  of t he  study presented herein it 
Teflon i s  used as an ablat ive heat shield,  aerodynamic 

. optimum combination with a chemically fueled rocket i s  

i s  concluded t h a t  i f  
braking alone or i n  
unacceptable f o r  a 

blunt,  nonl i f t ing  vehicle returning t o  the  ea r th ' s  atmosphere a t  speeds i n  
excess of about 40,000 feet per second. For aerodynamic braking alone the  
r a t i o  of recoverable t o  i n i t i a l  weight rapidly d w n i s h e d  toward zero as the  
entry speed w a s  increased toward 60,000 f e e t  per second. For optimum combina- 
t i ons  of aerodynamic braking and rocket braking, t he  weight r a t i o s  fo r  an in i -  
t i a l  speed of 60,000 f e e t  per second w e r e  unacceptably low (6 t o  18 percent) .  

The achievement of recoverable weight r a t i o s  of at  least 50 percent fo r  
i n i t i a l  speeds i n  the  range of 40,000 t o  60,000 f e e t  per second w i l l  require 
e i the r  an ab la t ive  heat shield or a rocket with a performance f ivefo ld  higher 
than t h a t  of Teflon, or a chemically fueled rocket, respect ively.  A f ivefo ld  
higher heat of ab la t ion  than t h a t  of Teflon appears t o  be wel l  within the  capa- 
b i l i t y  of several  known ablat ive materials (e .g . ,  quartz and graphi te ) .  
increase i n  rocket spec i f ic  impulse by a f ac to r  of 5 over t h a t  fo r  a chemically 
fueled rocket i s  a fac tor  of 2.5 higher than t h a t  expected f o r  a nuclear 
rocket,  or one-half of that expected f o r  e l e c t r i c a l  propulsion. 

An 

Extensive e f f o r t  i s  already being made t o  develop higher performance 
rockets,  but only l imited a t ten t ion  and e f f o r t  has been directed toward the  
problem of developing ablat ive heat shields  fo r  high rad ia t ive  heating environ- 
ments. A property of importance i n  addi t ion t o  heat of ab la t ion  i s  resis tance 
t o  the  thermal shock imposed by the  high heating-rate environment. A cursory 
consideration of t he  l imited information on the  propert ies  of graphite indi-  
cates  t h a t  it may prove t o  be a very promising mater ia l  f o r  the  high rad ia t ive  
heating environment. The a t t r a c t i v e  fea tures  of graphite are i t s  apparently 
high heat of sublimation. Widely varying values of heat of sublimation a re  
quoted i n  the  l i t e r a t u r e ;  t he  range i s  from 6 t o  25 times the  heat required t o  
vaporize Teflon. The high thermal conductivity of graphite,  a property which 
has made it unfavorable fo r  use on entry vehicles designed t o  enter  the  ea r th ' s  
atmosphere a t  escape speed or l e s s ,  may prove t o  be very desirable from the 
standpoint of minimizing the  temperature gradient a t  t he  surface, and, hence, 
t he  thermal s t resses .  With graphite forming the  ab la t ive  layer  fo r  the  very 
high speed port ion of a t ra jec tory ,  an underlayer of a c.omposite charring 
mater ia l  might provide the  protect ion fo r  the  remainder of t he  t r a j ec to ry .  

Alternative p o s s i b i l i t i e s  f o r  developing ab la t ive  heat shields  fo r  high 
rad ia t ive  heating are (1) an ablat ive heat shield which r e f l e c t s  t he  radiat ion,  
while blocking convective heating as the  r e s u l t  of vaporization, and (2 )  a 
metal l ic  heat sink over a layer  of ablat ive material ,  t he  metal l ic  layer  t o  
r e f l e c t  t he  rad ia t ion  and absorb the  convective heat during the  high radiat ive 
heating period, and the  underlying ablat ive layer  t o  a f ford  t h e  protect ion for  
t he  remainder of t he  t r a j ec to ry .  Two examgles of the  f i rs t  approach are  prop- 
e r t y  oriented, r e f l ec t ing  p a r t i c l e s  d i s t r ibu ted  through a transparent ablat ive 
material, and multi layers of transparent ablat ive material with a very t h i n  
r e f l ec t ive  f i l m  between each layer .  Achievement of the  desired high 
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r e f l e c t i v i t y  appears uncertain,  however, because most of t he  rad ia t ion  w i l l  be 
i n  the  u l t r av io l e t  region of t h e  spectrum where f e w  materials a re  known t o  have 
high r e f l e c t i v i t y .  The second approach might prove t o  be ine f f i c i en t  because 
of the  weight of the material required t o  absorb t h e  convective heating during 
t h e  high rad ia t ive  heating period. 
load might be achieved by these two approaches, they a re  worthy of serious 
a t ten t ion .  

Since re jec t ion  of t he  rad ia t ive  heating 

A completely d i f f e ren t  approach t o  the  problem of en t ry  at  very high 

A penalty i n  convective heating w i l l  be incurred, but 
speeds t h a t  has been suggested ( r e f .  13) i s  the  use of a conical nose t o  reduce 
t h e  rad ia t ive  heating. 
general ly  an ablat ive heat  sh ie ld  w i l l  be su f f i c i en t ly  more e f fec t ive  fo r  con- 
vective than f o r  rad ia t ive  heating so  t h a t  a net gain i s  rea l ized .  I n  view of 
t h i s  f inding and the  r e s u l t s  of the  present study for blunt  bodies, aerodynamic 
braking m u s t  be favored over combined aerodynamic and rocket braking f o r  speeds 
up t o  at  l e a s t  60,000 feet per second. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Jan. 20, 1964 
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